Аппроксимация

"Что такое аппроксимация?" – один из нередко задаваемых в сети интернет вопросов. Жаждущие получить ответ, обычно хотят его иметь в форме: точной, всеобъемлющей и короткой. О содержательности ответа как-то забывают.

 

Если спросить: "Что такое музыка?", то я, как дилетант, скажу, что музыка – это то, что приятно слушать. А профессионал возможно будет поставлен в тупик таким "простым" вопросом. Однако, ближе к теме.

 

Аппроксимация – это приближение. Приближение чего-то к чему-то с той или иной точностью. Более пространно: аппроксимация, как процесс, – это построение объекта, с той или иной точностью воспроизводящего те или иные свойства исходного, т.е. аппроксимируемого, объекта. Причем, построение объекта в том или ином отношении более удобного, чем исходный объект.

 

У аппроксимации может быть множество направлений и приложений. Я могу кратко рассказать о той аппроксимации, которой занимался десятки лет. Более всего, это относилось к процессам топливоиспользования на ТЭС. Десятки, а порой и сотни, разных графиков и таблиц, характеризующих работу энергетического оборудования, приходилось переводить в форму аппроксимирующих уравнений или формул. То есть, одни математические объекты – графики и таблицы – воспроизводились другими математическими объектами – аппроксимирующими формулами. После чего формулы заводились на ЭВМ или персональный компьютер, и по ним можно было получить все нужные выходные данные, не водя пальцем по исходным графикам или делая какие-то грубые оценки по таблицам.

 

Кроме этого, мне, как программисту (или алгоритмисту), приходилось создавать довольно сложные программы – модели, описывающие технологический процесс. Порой эти программы были весьма неудобны для обычного пользователя. Но полученные расчетным путем данные вполне удавалось воспроизвести достаточно точной и простой в обращении аппроксимирующей формулой.

 

Вы можете в Excel построить график и щелкнуть по нему правой кнопкой мыши. Появится запрос: Вставить линию тренда. Там же можно будет разместить на графике и уравнение тренда. Это и будет примером аппроксимирующей формулы. На нашем сайте вы также можете найти десятки примеров аппроксимации.

 

Но чтобы получить более или менее содержательное представление, скажем, о пилке дров, надо сначала обрести хотя бы какие-то навыки владения пилой. Тоже самое и с аппроксимацией.

 

Успехов!

 

P.S. Решил посмотреть как интерпретируется слово "аппроксимация" в сети интернет. Более других мне понравилась интерпретация в Большом Энциклопедическом Словаре (БЭС):

 

"АППРОКСИМАЦИЯ (от лат. approximo - приближаюсь), замена одних математических объектов (напр., чисел или функций) другими, более простыми и в том или ином смысле близкими к исходным (напр., кривых линий близкими к ним ломаными)".

 

Только "замена" – это, в моем понимании, нечто вторичное. А первичное – "приближение". Я, например, порой строил десятки аппроксимирующих формул, добиваясь наилучшего приближения к исходной таблице данных. А собственно "замена" в основном касалась замены одной аппроксимирующей формулы на другую, более удачную. Впрочем, пользователь уже мог использовать мою аппроксимирующую формулы "взамен" исходной таблицы.

 

В Большой Советской Энциклопедии (БСЭ) находим более развернутое определение:

 

"Аппроксимация (от лат. approximo — приближаюсь), замена одних математических объектов другими, в том или ином смысле близкими к исходным. Аппроксимация позволяет исследовать числовые характеристики и качественные свойства объекта, сводя задачу к изучению более простых или более удобных объектов (например, таких, характеристики которых легко вычисляются или свойства которых уже известны). В теории чисел изучаются диофантовы приближения, в частности приближения иррациональных чисел рациональными. В геометрии и топологии рассматриваются аппроксимации кривых, поверхностей, пространств и отображений. Некоторые разделы математики целиком посвящены аппроксимации; например, приближение и интерполирование функций, численные методы анализа. Роль аппроксимации в математике непрерывно возрастает. В настоящее время аппроксимация может рассматриваться как одно из основных понятий математики". С. Б. Стечкин.

 

Осталось только поинтересоваться что означают "диофантовы приближения" и прочие специальные термины и все станет окончательно понятно.

 

В Википедии (свободной энциклопедии) очень короткое определение:

 

"Аппроксимация, или приближение — научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми".

 

Позволю себе заметить, что "приближение" – это не есть "замена" или это "замена" в каком-то очень узком и специальном смысле, например в смысле "использование вместо".

 

В словаре бизнес-терминов находим весьма расплывчатое, на мой взгляд, определение:

 

"Аппроксимация – приближенное решение сложной функции с помощью более простых, что резко ускоряет и упрощает решение задач. В экономике целью аппроксимации часто является укрупнение характеристик моделируемых экономических объектов".

 

В философской энциклопедии:

 

"АППРОКСИМАЦИЯ (от лат. approximare — приближаться) — метод сознательного упрощения "слишком точного" теоретического знания с целью привести его в соответствие с потребностями и возможностями практики. Например, использование числа "пи" с точностью до пятого знака после запятой достаточно для решения поставленной практической задачи. Аппроксимация первоначально использовалась в математике и затем распространилась на все науки. Аппроксимация противоположна идеализации". Г. Д. Левин.

 

В научной диалектике есть положение: "Истина всегда конкретна". Так и с аппроксимацией – нет аппроксимации "вообще". Ее содержательная часть – в конкретных приложениях и в конкретных областях. Я, например, занимался аппроксимацией графиков и табличных данных посредством подбора подходящих для этого формул с использованием метода наименьших квадратов, встроенного в электронные таблицы Quattro Pro и Excel. А способов подбора – десятки, и это уже не только наука, но и искусство. Ваш, Протасов Н.Г.

 

P.P.S. Вот еще информация, дополняющая в достаточно простой и понятной форме тему аппроксимации. Эта информация находится по адресу http://univer-nn.ru/ , а здесь я привожу ее в несколько сокращенном виде:

 

Задача аппроксимации (задача о приближении)

 

Пусть y = f(x) является функцией аргумента х. Нередко эта зависимость задается в табличном виде. В контрольных по математике на аппроксимацию также часто требуется найти некоторую аналитическую функцию, которая приближенно описывает заданную табличную зависимость. Кроме того, требуется определить значения функции в других точках, отличных от заданных табличных значений. Этой цели служит задача о приближении (аппроксимации). В этом случае находят некоторую функцию f(х), такую, чтобы отклонения ее от заданной табличной функции было наименьшим. Функция f(х) называется аппроксимирующей.

 

Вид аппроксимирующей функции существенным образом зависит от исходной табличной функции. В разных случаях функцию f(х) выбирают в виде экспоненциальной, логарифмической, степенной, синусоидальной и т.д. В каждом конкретном случае выбирают таким образом, чтобы достичь максимальной близости аппроксимирующей и табличной функций. Чаще всего, однако, функцию представляют в виде полинома по степеням х:

 

f(x) = ao + a1x + a2x2 + ... + anxn

 

Коэффициенты aj подбираются таким образом, чтобы достичь наименьшего отклонения полинома от заданной функции.

 

Таким образом, аппроксимация – замена одной функции другой, близкой к первой и достаточно просто вычисляемой".

 

Лично я редко пользуюсь полиномами в их классическом виде, как и другими стандартными представлениями, указанными в статье. Однако это уже нюансы технологии построения аппроксимирующих формул.

 

Еще раз – с пожеланиями успехов!

 

Дополнительные сведения:

Строим аппроксимирующие уравнения

Анонсы других статей

Copyright © 2009 - 2024 Алгоритмист | Правовая информация
Карта сайта
Яндекс.Метрика